<u>like</u>- the same, or similar to. (I have a shirt like yours.)

<u>like fractions</u>- fractions that have the same denominator. Fractions that have the same size pieces. ($\frac{1}{4}$ and $\frac{3}{4}$ are like fractions.)

<u>like denominators</u>- denominators that are the same number. (1/7 and 3/7 have like denominators.)

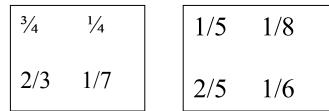
Write each definition in your own words.

like

like fractions

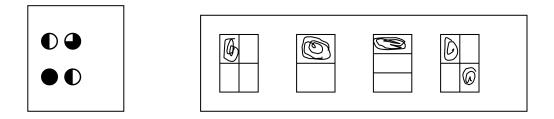
like denominators

Write two sentences using the word like.


1.

2.

Write four pairs of like fractions.


Write 5 fractions that all have like denominators.

Circle all the like fractions in each box.

Tutor's Pal Book 2

Circle all the like fractions in each box.

Use your cut-out fractions from Appendix B to do the following.

Draw 4 pairs of like fractions.

1.


2.

3.

4.

Fractions with like denominators can be added because you are adding two things that have the same size pieces.

 $\frac{3}{8} + \frac{2}{8}$ can be added because both are divided into 1/8 size pieces.

To add like fractions, add the numerators and keep the denominator the same.

Use the cut-out fractions from Appendix B to solve.

1.
$$1/4 + 2/4 =$$

2.
$$\frac{1}{6} + \frac{3}{6} =$$

3.
$$\frac{1}{2} + \frac{1}{2} =$$

4.
$$\frac{3}{8} + \frac{4}{8} =$$

Fill in the blank.

1. Why can you add fractions with like denominators?

Solve.

 $2 \cdot \frac{4}{7} + \frac{2}{7} =$ $3 \cdot \frac{1}{11} + \frac{3}{11} =$ $4 \cdot \frac{7}{19} + \frac{3}{19} =$

5.
$$\frac{3}{22} + \frac{2}{22} =$$

Make up 5 examples of addition problems with fractions that have like denominators.

Show using the cut-out fractions from Appendix B. Solve.

Any number minus itself is zero. This is true for any number including a fraction.

- 1. 4 4 = 0
- 2. 12 12 = 0
- 3. $\frac{1}{2} \frac{1}{2} = 0$
- 4. 2/3 2/3 = 0

Solve.

- 5. 8-8=
- 6. 32 30 =
- 7. 100 100 =
- 8. 66 56 =
- 9. 1/3 1/3 =
- 10. 5/7 5/7 =
- 11. $\frac{10}{13} \frac{10}{13} =$
- 12. 4 4 =
- 13. $\frac{23}{78} \frac{23}{78} =$
- 14. 21 20 =

When adding fractions, if your answer is greater than one,

- 1. first change to a mixed fraction
- 2. then reduce to simplest form if needed.

Example:
$$\frac{3}{8} + \frac{7}{8} = \frac{10}{8}$$

1. change to a mixed fraction $1 \frac{2}{8}$

2. reduce the 2/8 to simplest form

$$\frac{2}{8} \div \frac{2}{2} = \frac{1}{4}$$

the answer is
$$\begin{pmatrix} 1 & 1 \\ 4 \end{pmatrix}$$

Solve using the steps shown above.

1.
$$\frac{3}{4} + \frac{3}{4} =$$

2.
$$\frac{5}{6} + \frac{4}{6} =$$

3.
$$\frac{8}{9} + \frac{7}{9} =$$

Solve.

- $1. \qquad \frac{6}{8} + \frac{6}{8} =$
- 2. $\frac{6}{12} + \frac{9}{12} =$
- $3. \qquad \frac{15}{20} + \frac{10}{20} =$
- 4. $\frac{13}{18} + \frac{11}{18} =$

Study the following.

Subtracting is similar. Subtract the numerators and keep the denominator the same.

Example: $\frac{4}{8} - \frac{1}{8} = \frac{3}{8}$

Use the cut-out fractions to show each subtraction problem. Solve. Change to a mixed fraction and/or reduce as needed.

1. $\frac{7}{8} - \frac{2}{8} =$ 2. $\frac{10}{8} - \frac{1}{8} =$ 3. $\frac{5}{6} - \frac{1}{6} =$ 4. $\frac{2}{3} - \frac{1}{3} =$